Programm & Abstracts                 "Innovationen in der Augenheilkunde"

Aktuelle Tagungsinformationen
   News and Updates

Anmeldung zur Tagung
   Registration
Hotelbuchung
   Hotel Registration
Grußwort
   Welcome address
Beteiligte Gesellschaften
   Societies involved
Eröffnung des Kongresses
   Opening Ceremony
Preise
   Awards
Wissenschaftliches Programm
   Scientific program
Posterpräsentationen
   Poster Presentation
Kurse
   Courses
Begleitende Veranstaltungen
   Collateral Events
Rahmenprogramm
   Social program
Jubiläumsparty
   Jubilee Party
DOG Information
   DOG Information
Allgemeine Informationen
   General Information
Autorenindex
   Index of Authors
Ausstellerliste
   Exhibitors
Sponsoren
   Sponsors
Teilnahmegebühren
   Registration fees
Impressum



DOG Homepage

Improvement of Glaucoma Diagnosis by Double-Bagging

Hothorn T., Lausen B.,
Friedrich-Alexander-Universität, Institut für Medizininformatik, Biometrie und Epidemiologie (IMBE) (Erlangen)

Purpose: It is the aim to classify subjects as normal or glaucomatous based on laser scanning data from Heidelberg Retina Tomograph (HRT) and anamnestic data using a combination of linear and tree classifiers.
Method: Bootstrap aggregation of classification trees lead to improved error rates for glaucoma classification based on standard HRT variables (Mardin et al., 2002). Monte-Carlo studies on classifiers for HRT variables indicate that bagged classification trees perform well when subgroups of patients with different characteristics are investigated. Based on this results we suggest a combination of both LDA and classification trees ("Double-Bagging") for further improvements in glaucoma classification.
Results: Double-Bagging performs comparable to the best of both methods. For the cross-sectional study (Mardin et al, 2002), the estimated misclassification error of Double-Bagging is 14.3% (Sensitivity: 81.6%, Specifity: 89.8%).
Conclusions: The use of the combined classifiers decreases error rates for glaucoma classification and the estimated error rate is unbiased for method selection.
References: Mardin CY, Hothorn T, Peters A, Jünemann AG, Michelson G, Lausen B (2002): New Glaucoma Classification Method Based on Standard HRT Parameters by Bagging Classification Trees, submitted

Zurück/Back